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Abstract. An interpretation of the cold fission events in thermal-neutron-induced fission of heavy nuclei
is given. The descent from the saddle point is considered as a dynamical process with reversible coupling
between collective and intrinsic degrees of freedom. The distribution function for the collective variables
is expressed as a product of two terms: the adiabatical and the dynamical factors. A simple model for
symmetric fission to study the mass distribution is presented. As example, the calculations are performed
for the nucleus 264Fm. Gross features of the cold fission are discussed as well as the dependence of the
theoretical mass distribution on the parameters of the model.

PACS. 25.85.-w Fission reactions

1 Introduction

An energy of 20–40 MeV is spent to deform and excite
the fragments in the usual fission. These fragments reach
ground states by neutron evaporation and gamma ray
emission. The remaining part of the Q-value gives the total
kinetic energy (TKE) of the fragments. In the cold fission
events [1], the TKE value practically exhausts the Q value
(neutronless fission). While the component of the cold fis-
sion is rare in the U, Np, Pu isotopes [2], it is rather strong
in the Fm, Md, No, Cf and other transfermiun nuclei [3].

Analogously to the cluster decay the cold spontaneous
fission was interpreted [4, 5] as the penetration of a bar-
rier given in the overlapping region by the minimum of
the potential energy of the system and in the external
region by the interaction of the two fragments in their
ground states. The deformations of both fragments seems
to be essential for the explanation of the mass and charge
distributions in cold fission [6]. For cold fission, only the
first two to three rotational levels are populated indicat-
ing that the fragmentation process is along the symmetry
axis and very slow. In the frame of the interpretation [7]
of the cold fission, the total effect of dissipation consists
in an enhancement of the quantum tunneling. This con-
clusion is consistent with our results in a recent paper [8]
where we showed that the coupling between collective and
intrinsic degrees of freedom gives rise to an enhancement
of the state density along the fission path being very much
expected beyond the external saddle point with a strong
dependence on the shape asymmetry of the fragments.
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The aim of this paper is to give an interpretation of the
cold fission events in the thermal-neutron-induced fission
in which the fission occurs above the barrier. We think
that it is possible to try a dynamic image of the cold fis-
sion, if a reversible coupling between the intrinsic and col-
lective degrees of freedom is considered. Since we consider
the rare cold fission events, the dissipation in our approach
is disregarded. Considering the dissipation as a stohastic
process, we can assume the descent from the saddle point
to scission without dissipation. The reversible coupling in-
duces only mixtures between the intrinsic and collective
states, being the average energy available for each sub-
space constant. The existence of such cold events (cold
compact and cold deformed fission) is well established
by the experiments, i.e., 233U(nth,f) [9], 235U(nth,f) [10],
232U(nth,f) and 239Pu(nth,f) [11], in the mass and charge
yields at very high and very low kinetic energies. In the
present work we consider a mechanismus to explain the
mass distribution of cold events for fission reactions in-
duced by thermal neutrons through a reversible coupling
between the mass asymmetry coordinate and the intrinsic
degrees of freedom. With the model suitable for symmet-
ric fission, we show a possible reason for the fine structure
in the mass yield.

The arrangement of the paper is as follows: In Sect. 2,
the theoretical formalism is outlined. In Sect. 3, a model
for a heavy nucleus is presented having as a collective
mode, a quantum oscillator associated to the mass asym-
metry coordinate. The intrinsic degrees of freedom are de-
scribed as a Fermi gas in the Hartree approach. The fission
path will be fixed using the Pashkevichś parametrisation
[12]. In Sect. 4, we will explore some of the gross features of
the cold fission of a heavy nucleus as well as its theoretical
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fission mass distribution. For example, the calculation will
be carried out for the nucleus 264Fm. This neutron-rich
nucleus should be the best cold-fissioning nucleus [13],
owing to the strong shell effect of the doubly magic frag-
ments 132Sn. The dependence of the theoretical cold fission
mass distribution on the parameters used in our model will
be discussed as well the concluding remarks are given in
Sect. 5.

2 Theoretical formalism

We take the notation {R} for the set of collective variables
and {r′} for the set of the intrinsic ones. The configura-
tion space of the nucleus {q} can be represented as a di-
rect sum of the subspaces of both kinds of variables. The
Hilbert space of the nucleus could be generated by the di-
rect product of the state vector basis associated to both
kinds of degrees of freedom. Let (τ) and (n) are the sets
of quantum numbers related to the intrinsic and collective
degrees of freedom, respectively. The total Hamiltonian of
the fissioning nucleus is

Htot = Hi(r′) + Hc(R) + Vic(r′,R), (2.1)

where Hi is the intrinsic hamiltonian, Hc the collective
one and Vic represents the coupling between both kinds
of dynamical variables. The state of the system can be
understood as a eigenstate mixture described by the sta-
tistical operator ‘w’ obeying a hamiltonian dynamics. In
our stationary system, the probability for the system to
occupy a volume ‘dq’ around ‘q’ in its configuration space
can be expressed with the density-matrix of the ensemble
in the energy representation w(τn)

dWq =
∑
τn

w(τn) · |ψ(τn)(q)|2dq, (2.2)

where,
Htotψ(τn)(q) = E(τn)ψ(τn)(q). (2.3)

If the coupling term Vic is assumed to be weak and the
spectrum of ‘Hi + Hc’ is not degenerated (for simplifica-
tion), we can apply the perturbation theory in the first
approximation to the problem (2.3) (see [8]). If we assume
also that the coupling operator Vic is not diagonal in the
basis of adiabatical states {|τn〉0 ∼ χ(τ)(r′) ·ϕ(n)(R)} then
the average energy of the system is expressed as the sum
of the average energy of each one of the subspaces. The
functions {χ(τ)(r′)} and {ϕ(n)(R)} are respectively eigen-
functions of Hi and Hc, belonging to the eigenvalues {E(τ)

i }
and {E(n)

c }. So, in this case the coupling induces only mix-
tures in the intrinsic and collective states described by the
statistical operators wi and wc. The average energy avail-
able for each subspace is conserved while the system is
moving in the configuration space. This type of coupling is
called reversible coupling, because it does not change the
entropy of each subspace, and could be presented along
the cold fission.

The probability of finding the system in a dR volume
in the space of their collective coordinates for an arbitrary
value of the intrinsic coordinates is as follows

dWR = dR
∑
τn

w(τn) ·
∫
dr′|ψ(τn)(q)|2, (2.4)

where

|ψ(τn)(q)|2 = |ψ0
(τn)(q)|2

+
∣∣∣∣∑
τ ′n′

C(τn; τ ′n′) · ψ0
(τ ′n′)(q)

∣∣∣∣2 (2.5)

+ 2 Re
{
ψ0∗

(τn) ·
∑
τ ′n′

C(τn; τ ′n′) · ψ0
(τ ′n′)(q)

}
,

C(τn; τ ′n′) = 0〈τn|Vic|τ ′n′〉0
E0

(τn) − E0
(τ ′n′)

.

The contribution of (2.5) to the probability (2.4) is only
limited to the first two terms. From the first term in (2.5)
we obtain in (2.4)∑

n

[∑
τ

w(τn) ·
∫
dr′|χ(τ)(r′)|2

]
· |ϕ(n)(R)|2dR (2.6)

The term in brackets represents an average in the ensem-
ble describing the intrinsic states of the systems. For a de-
fined collective state (n) its quantity is considered propor-
tional to the state density related to the intrinsic degrees
of freedom with the coefficient Ξ and the set of orthonor-
mal eigenfunctions {χ(τ)(r′)}

ρi(Ē − E(n)
c ) = Ξ ·

∑
τ

w(τn). (2.7)

where Ē is the total excitation energy. The value of Ξ is
obtained from the condition of normalization of the w-
matrix

Ξ =
∑
n

ρi(Ē − E(n)
c ). (2.8)

Taking the contribution of the second term of (2.5) to the
probability (2.4) in the first approximation, we obtain

dWr = Ξ−1
∑

n

ρi(Ē− E(n)
c ) · |ϕ(n)(R)|2dR

+
∑
nτ

w(τn) ·
∑

n′n′′τ ′

C∗(τn; τ ′n′) · C(τn; τ ′n′′)

·ϕ(n′)∗(R) · ϕ(n′′)(R)dR. (2.9)

For our system where the number of intrinsic variables is
quite large, we can use the known Boltzman distribution
for the collective density matrix and

ρi(Ē − E(n)
c ) ≈ ρi(Ē) · e−E(n)

c /T . (2.10)

Due to the reversible coupling the excitation energy is
redistributed between intrinsic and collective degrees of
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freedom. As the result, the cold fragments could appear.
Taking into account (2.10) and correspondence of w(τn)
matrix to the microcanonical ensemble, one can write

dWR = dR · {Y adiab.R · Y dyn.R }, (2.11)

where

Y adiab.R =

∑
n

e−E
(n)
c /T · |ϕ(R)|2∑

n

e−E
(n)
c /T

, (2.12)

Ydyn.
R = 1 +

e−S(Ē) ·
{∑

n
e−E(n)

c /T

}
∑
n

e−E
(n)
c /T · |ϕ(n)(R)|2

·
{∑

n,τ

∑
n′,n′′,τ ′

C∗(τn; τ ′n′) (2.13)

·C(τn; τ ′n′′) · ϕ(n′)∗(R) · ϕ(n′′)(R)
}
,

being S(Ē) the entropy of the system.
An expression similar to (2.12) has been employed by

the fragmentation theory [14] to study adiabatically the
charge and mass distributions in fission or fusion at low
excitation energies. The charge ηz and mass η asymmetries
are treated quantum mechanically obeying a Schrödinger’s
dynamics. The expression (2.13) is a dynamical factor
modulating the adiabatical distribution and it depends on
the reversible coupling and the excitation energy.

3 Model

Here, we describe a simple model to study the cold fis-
sion of a heavy nucleus. The fission path is fixed using the
Pashkevichś parametrisation [12] taking the parameters
ε, α1 and α4 to describe the nuclear shape. The parame-
ter ε reflects the distance between the nascent fragments,
α1 the shape asymmetry and α4 their deformations. The
role of the α1 and α4 parameters is relevant in the nu-
clear shape when the future fragments start to show. The
Pashkevichs parametrisation uses Cassinian ovals as fig-
ures of the zeroth-order approximation and the deviation
from this is represented as a series in Legendre polynomi-
als. This parametrisation describes only axially symmetric
nuclear shapes.

We imagine our system like a Fermi gas where nu-
cleons freely move enclosed in a potential well which de-
generates gradually into two potential wells during the
fission process. As intrinsic variables we consider the set
{zi, i = 1, . . . ,A} of nucleon z-coordinates relatived to
geometrical center of Cassinian ovals which is situated in
the plane that defines the future fragments. Through this
plane the exchange of nucleons occurs between two frag-
ments. This collective motion [14] is described by the col-
lective coordinate η = A1−A2

A1+A2
(A1 and A2 are the frag-

ments masses). Under the assumption of a homogeneous
mass density, the mass asymmetry coordinate η is reduced
to volume asymmetry coordinate ξ = V1−V2

V1+V2
, where the

volumes V1 and V2 are defined with a plane through the
neck of the fissioning nuclear system. The coordinate ξ
is strongly related to α1 parameter (see [12]). Within the
liquid drop model (LDM) one can express the potential in
terms of the mass asymmetry coordinate as in [15, 16]

V (η) =
Kη · η2

2
, (3.1)

where Kη is the constant of the potential which is a func-
tion of relative distance of the nascent fragments. The time
variation of this constant is smooth during the dynamical
descent and can be expressed to a good approximation by
average value. This constant can be derived, for example,
on the basis of the LDM such as in [16], e.g. for the nucleus
264Fm, Kη = 7062 MeV.

In the present paper we disregarded the shell effect.
Here, we assume that the collective coordinate η linearly
couples to the intrinsic coordinates {zi} as

Vic = γ · η ·
A∑
i=1

zi, (3.2)

where γ is the strength of the coupling which is taken as
a free parameter, constant along the fission process. Once
the two future fragments are defined, the momentum dis-
tribution of the nucleons at each fragment changes as a
result of a continuos changes in the shapes of the frag-
ments. The momentum of the nucleon is quantified as a
function of the occupied volume. In the case of cold fis-
sion, nucleons must occupy the lowest states of momen-
tum. The difference between the Fermi momenta of the
fragments rises with nucleon exchange from one fragment
to another. In other words, this nucleon exchange is con-
ditioned by the spatial location of the nucleons, i.e., to the
places where the nucleons are moving (z < 0 or z > 0).
This is described by the set of intrinsic variables {zi}.
With the coupling proposed above we want to express a
possible nexus between both kinds of degrees of freedom.
It seems clearly that the coupling (3.2) is not diagonal in
the harmonic oscillator basis as well as in the plane wave
basis as we can see in the Appendix A. This coupling has
the properties of a reversible coupling.

The mass parameter mηη of the oscillator was calcu-
lated in hydrodynamical models [17] and in the frame-
work of the two-center shell model and cranking model
[18]. These calculations yield a dependence of the mass on
the distance between nascent fragment and on the mass
asymmetry coordinate averaged over all coordinates. For
simplicity, we will assume a constant value for this param-
eter, averaged over all coordinates. Realistic value of the
mass mηη is of the order of 10−40 MeV s2.

The wave function of Hartree is taken as the intrinsic
state vector, e.g. the product of A normalized plane waves
in the V volume of the nucleus, which remains constant.
The set of internal quantum numbers (τ) is taken as the
set of momenta (p1, . . . ,pA), which take quasi-continuum
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values from 0 − PF in the Fermi sphere if we take the
volume of the nucleus large enough. The eigenfunctions
and the eigenvalues of the quantum harmonic oscillator’s
problem are well known [19].

In the following we will calculate the theoretical mass
distribution in the framework of this simple model and
we will explore some gross features of the cold fission of
a heavy nucleus. For example, the calculation will be per-
fomed for the nucleus 264Fm.

3.1 Calculation of the adiabatical distribution

The adiabatical distribution was obtained in Sect. 2,
and was expressed through the expression (2.12). In the
present subsection we only obtain the adiabatical distri-
bution of the variable η in the frame of the simple model
proposed above. The adiabatical distribution is expressed
as

Yadiab. =
√
α · e−α·η2 · 〈A2

n ·H2
n(
√
αη)〉, (3.1.1)

where

〈(. . .)〉 =

∑
n

e−(n+ 1
2 ) h̄ωT · (. . .)∑

n

e−(n+ 1
2 ) h̄ωT

, (3.1.2)

α =
(Kη ·mηη)1/2

h̄
, (3.1.3)

h̄ω = h̄ ·
(
Kη

mηη

)1/2

, (3.1.4)

A2
n = (

√
π · n! · 2n)−1. (3.1.5)

The functions ‘Hn’ in (3.1.1) are the Hermite polynomi-
als. Note that the eigenfunctions of the oscillator are nor-
malized in the interval −∞ to ∞, though the range of
definition of our physical coordinate is −1 ≤ η ≤ 1. This
is possible because in our model the value of α is large
enough to make the following approximation,∫ 1

−1

e−αη
2 ·H2

n(
√
αη) · dη =

1√
α

∫ √α
−√α

e−y2 ·H2
n(y) · dy

≈ 1√
α

∫ ∞
−∞

e−y2 ·H2
n(y) · dy

(3.1.6)

3.2 Calculation of the dynamical factor

The dynamical factor can be expressed through the ex-
pression (2.13). In the frame of the model, being the en-
tropy of the Fermi gas ‘2aT’, the dynamical factor is ex-
pressed as

Fdyn. − 1 =
e−2aT · eαη2 ·

∑
τn

∑
n′,n′′,τ ′

C∗(τn, τ ′n′)
√
α · 〈A2

nH2
n(
√
αη)〉

·C(τn, τ ′n′′) · ϕ∗n′(η) · ϕn′′(η) (3.2.1)

where a is the parameter of the level density of Fermi gas
model (FGM). For the nucleus 264Fm, a = 25.68 MeV−1.
The wave functions are the known eigenfunctions of the
quantum oscillator’s problem. Taking the coupling (3.2)
into account, we obtain

C∗(τn, τ ′n′) · C(τn, τ ′n′′)

≈ γ2

(h̄ω)2

∣∣∣∣〈τ ∣∣∣ A∑
i=1

zi

∣∣∣τ ′〉∣∣∣∣2 〈n|η|n′〉∗ 〈n|η|n′′〉(n− n′)(n− n′′)
, (3.2.2)

where we assumed that our system contains many par-
ticles. The distance between the intrinsic levels is negli-
gable in comparision with the distance between collective
vibrational levels. The matrix elements 〈τ |zi|τ ′〉 are cal-
culated in Appendix A. Taking into account (3.2.2) and
〈n|η|n′〉 6= 0 for transitions between closing states of the
collective spectrum, the dynamical factor of the theoreti-
cal mass distribution

Fdyn − 1 ≈ Π · e−2aT · I2(ε, α1, α4) ·


∑
n

A2
nφ

2
n(η)

〈A2
nH

2
n(
√
αη)〉

 ,

(3.2.3)
is finally obtained, where,

A2
n = (

√
π · n! · 2n)−1,

φ2
n(η) = [η ·Hn(

√
αη) ·

√
α−Hn+1(

√
αη)]2,

Π =
γ2

(h̄ω ·Kη)
· A

2P 6
FR

8
0

36π2h̄6 .

The quantity I2(ε, α1, α4) expresses the influence of the in-
trinsic degrees of freedom through the coupling on the the-
oretical mass distribution. This quantity is proportional
to the dynamical coefficient of the collective enhancement
factor of level density [8]. Note that one of the arguments
of this quantity is the shape asymmetry parameter α1 re-
lated to volume or mass asymmetry. In the calculations
of the matrix elements 〈τ |zi|τ ′〉 we have assumed a fixed
nuclear shape and this could be justified if the collective
motion is slower than the motion in the intrinsic degrees
of freedom. The dependence of I2(ε, α1, α4) on the defor-
mation parameter α4 could permit to study qualitatively
the theoretical mass distribution vs. TKE. It is worthwhile
to recall that by far the largest fraction of the TKE re-
lease in fission is due to the Coulomb repulsion between
the nascent fragments at scission. Large and small kinetic
energies, therefore, correspond to compact (α4 < 0) and
deformed (α4 > 0) scission configurations, respectively.

4 Calculations for the nucleus 264Fm

4.1 Some gross features of the cold fission of a heavy
nucleus

In this subsection we will explore some gross features of
the cold fission of a heavy nucleus from a statistical point
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Fig. 1. Dependence of the quantity I2(ε, α1, α4) on the distance between the fragments measured by “ε” parameter of Pashke-
vich’s parametrisation for two extreme values of the asymmetry measured by “α1” parameter. The parameter α4 = 0

of view. This could be performed from the study of the
dynamical coefficient of the total state density [8]. In the
cold fission, the dynamical coefficient of the total state
density is relevant for the final stage of the fission path
depending on the nuclear shape by means of the quantity
I2(ε, α1, α4). It is revealed in Fig. 1.

Figures 2a–d show the contour plot of I2(ε, α1, α4) in
the (α1, α4)-plane for ε = 0.7, 0.8, 0.9 and 1. If we assume
that the cold fission path corresponds to configurations
with the greatest values of state density for each distance
between the nascent fragments, then these pictures point
out a shape transition along the dynamical descent from
elongated shapes to compact ones. It can be seen that the
state density is greatest for symmetric division (α1 = 0)
with the largest variance in α4. Near the scission point
(ε ∼ 0.98), the most probable nuclear configuration cor-
responds to symmetric fragments (α1 = 0) with spherical
shapes (compact shapes) around α4 ∼ −0.16. However,
because of the large variances of the α4 values (TKE val-
ues) for symmetric mass division, a variety of different
modes resulting in deformed as well as spherical shapes
could possibly be involved, indicating multimodal fission.

The present discussion from a statistical viewpoint
could be an alternative way to study multimodal fission
if an unrestricted parametrisation of the nuclear shape is
used. There is also the possibility of multimodal fission
[20], when a variety of fission channels or pathways are
possible for a fissioning nucleus on the same potential en-
ergy surface. Microscopic calculations [21] of the poten-
tial energy surface of 264Fm minimized for a rather unre-
stricted parametrisation of the nuclear shape, i.e., Pashke-
vich’s parametrisation taking into account the higher de-
formations α6, α8, α10, . . . , α20, indicate three pre-scission
shapes. The first valley corresponds to two symmetric
spherical fragments (the 132Sn decay), the second to the
standard fission and the third one to a symmetric de-
formed fragmentation.

4.2 Theoretical mass distribution

In this subsection we study the theoretical mass distribu-
tion for α4 = 0. Our intention is not to search for any
adjustments, but to study tendencies and the influence
of the parameters used by the model, such as: mass pa-
rameter, temperature, strength of the coupling and the
number of vibrational levels taken into account. Owing to
the weakness of the coupling and the low temperature of
the system, only the low vibrational levels of the oscillator
are taken into account. Calculations are performed taking
the first five levels of the oscillator. The mass distribution
is normalized to 50%.

Figures 3 and 4 show, respectively, the mass parameter
dependence for the adiabatical distribution and theoretical
mass distribution at scission (ε = 0.98) corresponding to
the temperature T = 0.01 MeV and a strength of the cou-
pling of γ = 10−4 MeVfm−1. From these figures one can
observe that the width of both distributions increases with
the decreasing mass parameter. The same behavior is re-
vealed in Fig. 5 but with the increasing temperature. This
figure shows the dependence of the adiabatical distribution
on the temperature for a mass parameter of mηη = 10−40

MeVs2.
Figure 6 shows that the theoretical mass distribution

is not changed from the external saddle point (ε = 0.7)
up to the scission point (ε = 0.98) for a temperature
T = 0.01 MeV, a mass parameter mηη = 10−40 MeVs2

and a strength of the coupling of γ = 10−4 MeVfm−1.
However, the theoretical mass distribution is changed very
much along the dynamical descent for higher temperature
T = 0.17 MeV and it is revealed in the Fig. 7. This figure
shows that asymmetric modes appear in the theoretical
mass distribution beyond the external saddle point. It is
caused by the increase of the dynamical factor through the
quantity as we showed in Fig. 1.

In Figs. 6 and 7 one can observe the disappearing
asymmetric modes in the theoretical mass distribution
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Fig. 2. a–d. The contour plot of I2(ε, α1, α4) with respect to α1 and α4 for ε = 0.7. The values are normalized between 0 and
1, b The same as Figure 2a, but for ε = 0.8, c The same as Figures 2a, but for ε = 0.9, d The same as Figures 2a, but for ε = 1

Fig. 3. Dependence of the adiabatical distribution on the mass
parameter for the temperature T = 0.01 MeV. The curves A, B
and C are for mηη = 0.2, 1 and 5× 10−40 MeV s2, respectively

with increasing temperature. This effect is due to a de-
crease of the dynamical factor and, thus, the probability
w(τn) for each microcanonical ensemble microstates with
the increasing temperature. We could expect the increase
of the width of the theoretical mass distribution with in-
creasing temperature.

Figure 8 shows the dependence of the theoretical mass
distribution at scission (ε = 0.98) point on the strength
of the coupling for a temperature T = 0.01 MeV and a

Fig. 4. Dependence of the theoretical mass distribution at scis-
sion point (ε = 0.98) on the mass parameter for the tempera-
ture T = 0.01 MeV and a strength of the coupling of γ = 10−4

MeV fm−1. The curves A, B and C are for mηη = 0.2, 1 and
2× 10−40 MeV s2, respectively. The distribution is normalized
to 0,5 for 0 ≤ η ≤ 1

mass parameter mηη = 10−40 MeVs2. In this picture we
can observe that the increase of the strength favors the
asymmetric modes.

Figure 9 shows the dependence of the theoretical mass
distribution at scission (ε = 0.98) point on the num-
ber of lowest levels of the oscillator taken into account
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Fig. 5. Dependence of the adiabatical distribution on the tem-
perature for the mass parameter mηη = 10−40 MeV s2. The
curves A, B and C are for T = 0.01, 3 and 5 MeV, respectively

Fig. 6. Dependence of the theoretical mass distribution on
the ( parameter for T = 0.01 MeV, mηη = 10−40 MeV s2 and
γ = 10−4 MeV fm−1. The saddle point distribution (ε = 0.7)
is equal to the scission point one (ε = 0.98). The distribution
is normalized to 0,5 for 0 ≤ η ≤ 1

in the calculations for a temperature T = 0.01 MeV,
mηη = 10−40 MeVs2 and a strength of the coupling of
γ = 10−4 MeVfm−1. It seems that the structures increase
when the highly excited vibrational levels of the oscillator
are occupied. It is also obtained with the fragmentation
theory [14].

Comparing the adiabatical distribution (Figs. 3 and
5) with the theoretical mass distribution shown in Figs.
4, 6–9 it is revealed that the structures are caused by the
coupling between the mass asymmetry coordinate and the
intrinsic degrees of freedom. The coupling causes transi-
tions between the vibrational levels of the oscillator and
its low excited states contribute to the mass distribution.
The periodicity of the structures is due to the harmonic

Fig. 7. The same as Figure 6, but for T = 0.17 MeV. The
curves A and B are for ε = 0.7 and 0.98, respectively

Fig. 8. Dependence of the theoretical mass distribution at
scission point (ε = 0.98) on the strength of the coupling for
T = 0.01 MeV and mηη = 10−40 MeV s2. The curves A, B and
C are for γ = 10−8, 10−6 and 10−4 MeV fm−1, respectively.
The distribution is normalized to 0,5 for 0 ≤ η ≤ 1

oscillator model used to describe the mass asymmetry co-
ordinate, in concret terms, it is due to the Hermite poly-
nomials in the dynamical factor. This periodicity is ob-
served in the experimental mass yields for the cold events
and have conection with the odd-even staggerings in its
charge yields [10, 11]. Therefore, in general the dynamical
factor and shell effects are responsible for the structures
of the mass distribution of the fission fragments.

5 Concluding remarks

In this paper we presented an interpretation of the cold fis-
sion events in the thermal-neutron-induced fission which is
considered as a dynamical process with reversible coupling
between collective and intrinsic degrees of freedom. The
reversible coupling is defined as nondiagonal in the basis
of adiabatical states inducing only mixtures between the
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Fig. 9. Dependence of the theoretical mass distribution at
scission point (ε = 0.98) on the number N of low vibrational
levels taken into account for T = 0.01 MeV, mηη = 10−40 MeV
s2 and γ = 10−4 MeV fm−1. The curves A, B and C are for
N = 3, 5 and 7, respectively. The distribution is normalized to
0,5 for 0 ≤ η ≤ 1

intrinsic and collective states. This type of coupling could
be responsible for cold fission. From a quantum statisti-
cal point of view a theoretical formalism was presented to
describe the distribution of the collective variables. This
distribution is expressed as a product of two terms: the
adiabatical distribution and the dynamical factor. The adi-
abatical distribution is similar to the one employed by the
fragmentation theory to study adiabatically the charge
and mass distributions. The dynamical factor includes the
reversible coupling between collective and intrinsic modes.
The model is presented to study the mass distribution of
a heavy nucleus having, as a collective mode, a quantum
oscillator associated to the mass asymmetry coordinate.
For simplicity, we took the Fermi gas model in the Hartree
approximation to describe the intrinsic degrees of freedom
which are linearly coupled to the mass asymmetry coordi-
nate. The influence of the intrinsic degrees of freedom on
the mass distribution is revealed in the dynamical factor
by a certain quantity proportional to the dynamical coeffi-
cient of the collective enhancement factor of level density.
It permits to explore some gross features of cold fission
from a statistical point of view. Near the scission point,
the most probable nuclear configuration corresponds to
symmetric fragments with compact shapes in agreement
with other theoretical predictions. The dynamical effects
of the coupling are underlying to the statistical features
discussed above. The width of the theoretical mass distri-
bution increase, with decreasing mass parameter and with
increasing temperature. The coupling gives rise to asym-
metric modes in the theoretical mass distribution. These
modes are favored along the dynamical descent but disap-
pear with increasing temperature. This dependence on the
temperature is a statistical effect related to the decrease
of probability for each microcanonical ensemble of mi-
crostates. The theoretical mass distribution is not practi-

cally changed along the dynamical descent for cold nucleus
but it is much changed for hot nucleus. The increase of
the coupling strength favors the asymmetric modes which
also depends on the number of occupied vibrational levels.
Due to the weakness of the coupling and the low temper-
ature of the system, only the low vibrational levels of the
oscillator could be occupied. We conclude that asymmet-
ric modes could be determined dynamically beyond the
saddle point, i.e., running down the barrier, as an effect
of the coupling between the mass asymmetry coordinate
and the intrinsic degrees of freedom. The extension of our
model to the asymmetric fission taking into account the
shell effects is in progress.
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6 Appendix A

The matrix elements 〈τ |zi|τ ′〉 are calculated within our
simple model. The nondiagonal matrix elements,

〈. . . ,pi, . . . |zi| . . . ,p′i, . . .〉 =
1
V
J(|pi − p′i|) (1A)

are not equal to zero, only for pk = p′k if k 6= i.

J(|pi − p′i|) =
∫
d3ri · zi · exp

[
i

h̄
(pi − p′i) · ri

]
. (2A)

If we assume that the vectors ∆p = p − p′ are in the
z-direction, along which the exchange of nucleons occurs,
and that its amplitudes are small due to the weakness of
coupling, then we can make the following approximation

exp
(
i

h̄
|∆p|z

)
≈ 1 + i

|∆p|z
h̄

. (3A)

With Pashkevich’s parametrisation the integral (2A) is
calculated as

J(|∆p|) ≈ I1(ε, α1, α4) +
i

h̄
|∆p| · I2(ε, α1, α4), (4A)

where,

I1(ε, α1, α4) = π

∫ 1

−1

dx
∂f1

∂x
· f1 ·G,

I2(ε, α1, α4) = π

∫ 1

−1

dx
∂f1

∂x
· f2

1 ·G,

f1 =
z̄ − zm
c

,
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G =
(
f1 +

zm
c

)2

− 2
c2

[R̃2(2x2 − 1) + εR2
0),

z̄ =
sign(x)√

2
·√√

(R̃4 + 2εR2
0R̃2(2x2 − 1) + ε2R4

0 + R̃2(2x2 − 1) + εR2
0,

R̃(x) ≈ R0(1 + α1P1(x) + α4P4(x)),

R0 = r0 ·A1/3.

The quantities c and zm determine the volume conserva-
tion and the mass center of the system, respectively.

Assuming that our system is large enough, we can do
the following

∑
p,p′

→ V 2

(2πh̄)6

∫
dp

∫
dp′. (5A)

The latter permits us to write

∑
p,p′

A2

V 2
|J(|∆p|)|2 ≈ A2P 6

FR
8
0

36π2h̄6 I2(ε, α1, α4), (6A)

where

I2(ε, α1, α4) = Ĩ2
1 (ε, α1, α4) + β · Ĩ2

2 (ε, α1, α4),

Ĩ1(ε, α1, α4) =
I1(ε, α1, α4)

π ·R4
0

,

Ĩ2(ε, α1, α4) =
I2(ε, α1, α4)

π ·R5
0

,

β =
6 · P 2

F ·R2
0

5 · h̄2 ,

PF =
√

2m0EF .

The Fermi energy EF is assumed as a constant of the order
of 39 MeV in all considered energy range.
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2. F. Gönnenwein, in The Nuclear Fission Process, edited by
C. Wagemans. (Boca Raton, FL: CRC Press 1991), p. 106

3. E.K. Hulet et al., Phys. Rev. Lett. 56, 313 (1986). D.C.
Hoffman, T.M. Hamilton, M.R. Lane, in Nuclear Decay
Modes, edited by D.N. Poenaru. (Bristol: IOP 1995)

4. W. Greiner, M. Ivascu, D.N. Poenaru, A. Sandulescu, in
Nuclei Far from Stability, edited by D.A. Bromley. (New
York: Plenum Press 1988) p. 641

5. A. Sandulescu, J. Phys. G15, 529 (1989)
6. Y.S. Shi, W.J. Swiatecki, Nucl. Phys. A464, 205 (1987)
7. E. Stefanescu, W. Scheid, A. Sandulescu, W. Greiner,

Phys. Rev. C53, 3014 (1996)
8. A. Dı́az-Torres, F. Guzmán-Mart́ınez, R. Rodŕıguez-
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